Istituto Giordano S.p.A.

Via Rossini, 2 - 478 | 4 Bellaria-Igea Marina (RN) - İtalia
Tel. +39 054 | 343030 - Fax +39 054 | 345540
istitutogiordano@giordano.it - www.giordano.it
PEC: ist-giordano@legalmail.it
Cod. Fisc/Part. IVA: 00 549 540 409 - Cap. Soc. € I.500.000 i.v.
RE.A. c/o C.C.I.A.A. (RN) 156766
Registro Imprese di Rimini n. 00 549 540 409

RAPPORTO DI PROVA N. 317064

Luogo e data di emissione: Bellaria-Igea Marina - Italia, 30/06/2014

Committente: KNAUF INSULATION S.p.A. - Via E. Gallo, 20 - 10034 CHIVASSO (TO) - Italia

Data della richiesta della prova: 09/04/2014

Numero e data della commessa: 62841, 10/04/2014

Data del ricevimento del campione: 16/04/2014

Data dell'esecuzione della prova: 07/05/2014

Oggetto della prova: misurazione in laboratorio dell'isolamento acustico per via aerea secondo le

norme UNI EN ISO 10140-2:2010 ed UNI EN ISO 717-1:2013 di parete

Luogo della prova: Istituto Giordano S.p.A. - Via Erbosa, 78 - 47043 Gatteo (FC) - Italia

Provenienza del campione: campionato e fornito dal Committente

Identificazione del campione in accettazione: n. 2014/0823/F

Denominazione del campione*.

Il campione sottoposto a prova è denominato "Controparete a secco con rotoli in lana di vetro Ecose® Technology Knauf Insulation Ultracoustic R, spessore nominale 45 mm".

(*) secondo le dichiarazioni del Committente.

LAB N° 0021

Comp. AV Revis. ON

Il presente rapporto di prova è composto da n. 9 fogli.

Foglio n. 1 di 9

Descrizione del campione*.

Il campione sottoposto a prova è costituito da una parete base in laterizio porizzato, protetta sul lato interno da una controparete isolante con struttura indipendente a secco in doppia lastra, n. 4 scatole elettriche e rotoli isolanti in lana di vetro denominati "Ultracoustic R", spessore nominale 45 mm.

Il campione ha le caratteristiche fisiche riportate nella tabella seguente.

Larghezza rilevata totale	3600 mm		
Altezza rilevata totale	3000 mm		
Spessore nominale totale	230 mm		
Superficie acustica utile (3600 × 3000 mm)	10,80 m ²		
Massa unitaria (determinazione analitica)	191 kg/m ²		

Il campione, in particolare, è composto, a partire dalla superficie esposta al rumore, da:

- strato d'intonaco tradizionale a base di malta cementizia, densità rilevata 1900 kg/m³ e spessore rilevato
 15 mm;
- muratura, spessore rilevato 120 mm, realizzata con blocchi forati in laterizio porizzato tipo "30×12×20" posati con asse dei fori verticale, legati con giunti orizzontali e verticali continui in malta cementizia, provvisti di n. 34 fori passanti disposti su n. 3 file longitudinali ed aventi le caratteristiche fisiche riportate nella tabella seguente:

Lunghezza rilevata	300 mm		
Altezza rilevata	190 mm		
Spessore rilevato	120 mm		
Peso rilevato	6,4 kg		

- strato d'intonaco tradizionale a base di malta cementizia, densità rilevata 1900 kg/m³ e spessore rilevato
 15 mm;
- controparete isolante formata da:
 - struttura metallica portante, posta a 5 mm dalla muratura, e composta da:
 - n. 2 guide orizzontali, una inferiore ed una superiore, realizzate con profilati in acciaio zincato a forma di "U", sezione nominale d'ingombro 50 × 40 mm e spessore nominale della lamiera 0,6 mm, fissate all'apertura di prova mediante tasselli previa interposizione di nastro di disgiunzione monoadesivo;
 - n. 7 montanti realizzati con profilati in acciaio zincato sagomati a forma di "C", sezione nominale d'ingombro 50 × 50 mm e spessore nominale della lamiera 0,6 mm, posti ad interasse nominale di

^(*) secondo le dichiarazioni del Committente, ad eccezione delle caratteristiche espressamente indicate come rilevate.

600 mm ed inseriti alle estremità nella guide sopra descritte;

strato di materiale isolante realizzato mediante l'accostamento di rotoli in lana di vetro denominati "Ultracoustic R" aventi le caratteristiche fisiche riportate nella tabella seguente:

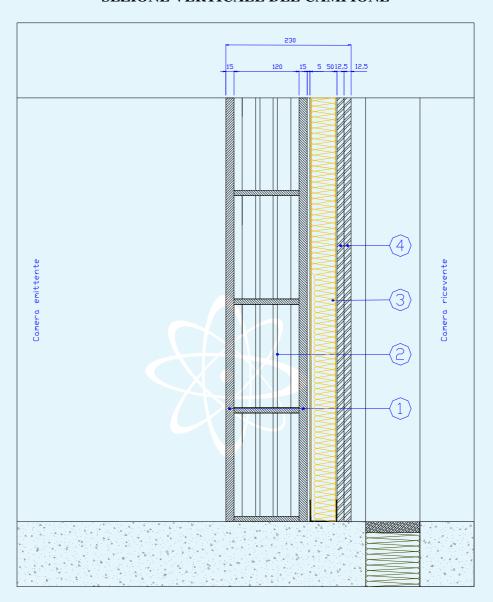
Lunghezza rilevata	3000 mm
Altezza rilevata	600 mm
Spessore rilevato	45 mm
Peso rilevato	1,84 kg
Densità nominale	17 kg/m ³

 pannellatura di rivestimento realizzata con doppio strato di lastre in gesso rivestito, spessore nominale totale 25 mm; le singole lastre di gesso rivestito hanno le caratteristiche fisiche riportate nella tabella seguente:

Lunghezza rilevata	3000 mm
Altezza rilevata	1200 mm
Spessore rilevato	12,5 mm
Peso rilevato	32,4 kg

le lastre sono fissate alla struttura portante a mezzo di viti autoperforanti fosfatate poste ad interasse di 250 mm; le giunzioni tra le lastre sono state rifinite tramite l'applicazione di nastro microforato e stucco coprifuga.

Sul paramento di lastre in gesso rivestito sopra descritto, sono state inserite n. 4 scatole elettriche, dimensioni 120×77 mm ciascuna, complete di frutti e di placca, di cui n. 2 poste a 250 mm d'altezza e n. 2 a 900 mm d'altezza.


Il campione è prodotto dal Committente ed è stato montato nell'apertura di prova a cura del Committente stesso, ad eccezione della parete di base che è stata realizzata dal personale dell'Istituto Giordano.

SEZIONE VERTICALE DEL CAMPIONE

LEGENDA

Simbolo	Descrizione				
1	Strato d'intonaco tradizionale a base di malta cementizia, spessore rilevato 15 mm				
2	Parete con blocchi forati in laterizio porizzato tipo "30×12×20", spessore rilevato 120 mm				
3	Rotoli in lana di vetro denominati "Ultracoustic R", spessore rilevato 45 mm				
4	Lastre di gesso rivestito, spessore rilevato 12,5 mm				

Riferimenti normativi.

La prova è stata eseguita secondo le prescrizioni delle seguenti norme:

- UNI EN ISO 10140-2:2010 del 21/10/2010 "Acustica Misurazione in laboratorio dell'isolamento acustico di edifici e di elementi di edificio - Parte 2: Misurazione dell'isolamento acustico per via aerea";
- UNI EN ISO 717-1:2013 del 04/04/2013 "Acustica Valutazione dell'isolamento acustico in edifici e di elementi di edificio - Parte 1: Isolamento acustico per via aerea".

Apparecchiatura di prova.

Per l'esecuzione della prova è stata utilizzata la seguente apparecchiatura:

- amplificatore di potenza 1000 W modello "ENERGY 2" della ditta LEM;
- equalizzatore digitale a terzi d'ottava modello "DEQ2496" della ditta Behringer;
- diffusore acustico dodecaedrico mobile con percorso rettilineo, lunghezza 1,6 m ed inclinazione 15°, posizionato nella camera emittente;
- diffusore acustico dodecaedrico fisso posizionato nella camera ricevente;
- n. 2 aste microfoniche rotanti con percorso circolare, raggio 1 m ed inclinazione 30°;
- n. 2 microfoni ø ½" modello "40AR" della ditta G.R.A.S. Sound & Vibration;
- n. 2 preamplificatori microfonici modello "26AK" della ditta G.R.A.S. Sound & Vibration;
- analizzatore bicanale in tempo reale modello "Symphonie" della ditta 01 dB-Stell;
- calibratore per la calibrazione dei microfoni modello "Cal 21" della ditta 01 dB-Stell;
- bilancia a piattaforma elettronica modello "VB 150 K 50LM" della ditta Kern;
- fettuccia metrica modello "Tri-Matic 5m/19mm" della ditta Sola;
- misuratore di distanza laser modello "DLE 50 Professional" della ditta Bosch;
- n. 2 termoigrometri modelli "HD206-2" e "HD206S1" della ditta Delta Ohm;
- barometro modello "UZ001" della ditta Brüel & Kjær;
- accessori di completamento.

LAB Nº 0021

Modalità della prova.

La prova è stata eseguita utilizzando la procedura interna di dettaglio PP017 revisione 10 del 12/06/2013 "Misura in laboratorio dell'isolamento acustico di elementi di edificio".

L'ambiente di prova è costituito da due camere, una delle quali, definita "camera emittente", contiene la sorgente di rumore, mentre l'altra, definita "camera ricevente", è caratterizzata acusticamente mediante l'area di assorbimento acustico equivalente.

Il campione, dopo essere stato condizionato per almeno 24 h all'interno degli ambienti di misura, è stato installato nell'apertura di prova secondo le modalità riportate nel disegno precedente.

Terminate le operazioni di posa del campione, si è provveduto a rilevare il livello di pressione sonora nell'intervallo di bande di ½ d'ottava compreso tra 100 Hz e 5000 Hz, sia nella camera emittente che in quella ricevente, ed a verificare i tempi di riverberazione di quest'ultima nel medesimo campo di lavoro; per la generazione del campo sonoro si è utilizzato rumore rosa.

L'indice di valutazione " R_w " del potere fonoisolante "R" è pari al valore in dB della curva di riferimento a 500 Hz secondo il procedimento della norma UNI EN ISO 717-1:2013.

Il potere fonoisolante "R", pari a n. 10 volte il logaritmo decimale del rapporto fra la potenza sonora incidente e la potenza sonora trasmessa attraverso il campione, è stato calcolato utilizzando la formula seguente:

$$R = L_1 - L_2 + 10 \cdot \log \frac{S}{A}$$

dove: R = potere fonoisolante, espresso in dB;

 L_1 = livello medio di pressione sonora nella camera emittente, espresso in dB;

L₂ = livello medio di pressione sonora nella camera ricevente, espresso in dB, corretto del rumore di fondo e calcolato utilizzando la formula seguente:

$$L_2 = 10 \cdot \log \left[10^{\frac{L_{2b}}{10}} - 10^{\frac{L_b}{10}} \right]$$

dove: L_{2b} = livello medio di pressione sonora combinato del segnale e del rumore di fondo, espresso in dB;

L_b = livello medio del rumore di fondo, espresso in dB;

se la differenza dei livelli $[L_{2b} - L_b]$ è inferiore a 6 dB, viene applicata una correzione massima pari a 1,3 dB ed il corrispondente valore del potere fonoisolante "R" è da considerarsi come un valore limite della misurazione;

S = superficie utile di misura del campione in prova, espressa in m²;

A = area di assorbimento acustico equivalente della camera ricevente, espressa in m², calcolata a sua volta utilizzando la formula seguente:

$$A = \frac{0.16 \cdot V}{T}$$

dove: V = volume della camera ricevente, espresso in m³;

T = tempo di riverberazione, espresso in s.

Sono state inoltre calcolati, come proposto dalla norma UNI EN ISO 717-1:2013, n. 2 termini correttivi in dB che tengono conto delle caratteristiche di particolari spettri sonori in sorgente e precisamente:

- termine correttivo "C" da sommare all'indice di valutazione "R_w" con spettro in sorgente relativo a rumore rosa (pink) ponderato A;
- termine correttivo "C_{tr}" da sommare all'indice di valutazione "R_w" con spettro in sorgente relativo a rumore da traffico (traffic) ponderato A.

Tra la fine dell'allestimento del campione e l'esecuzione della prova sono intercorse 18 h.

Incertezza di misura.

L'incertezza di misura è stata determinata in accordo con la norma UNI CEI ENV 13005:2000 del 31/07/2000 "Guida all'espressione dell'incertezza di misura", individuando per ciascuna frequenza il numero di gradi di libertà effettivi "v_{eff}" e l'incertezza estesa "U" del valore del potere fonoisolante "R", stimata con fattore di copertura "k" relativo ad un livello di fiducia pari al 95 %.

L'incertezza di misura dell'indice di valutazione " $U(R_w)$ " è stimata con fattore di copertura k=2 relativo ad un livello di fiducia pari al 95 %.

Condizioni ambientali al momento della prova.

Pressione atmosferica	101700 Pa
Temperatura media	19 °C
Umidità relativa media	57 %

Risultati della prova.

Volume della camera ricevente "V"	90,1 m ³		
Superficie utile di misura del campione in prova "S"	$10,80 \text{ m}^2$		

Frequenza	L_1	L_2	Т	R	$\mathbf{R}_{ ext{rif}}$	V _{eff}	k	U
[Hz]	[dB]	[dB]	[s]	[dB]	[dB]			[dB]
100	97,5	55,4	1,80	43,4	48,0	6	2,45	2,6
125	98,1	55,7	1,16	41,8	51,0	8	2,31	2,0
160	98,9	46,3	1,13	51,9	54,0	11	2,00	1,0
200	97,4	41,0	1,21	56,0	57,0	11	2,00	0,8
250	97,1	38,0	1,17	58,5	60,0	8	2,31	0,9
315	98,3	36,8	1,05	60,5	63,0	7	2,36	0,7
400	97,1	33,5	1,28	63,4	66,0	14	2,00	0,4
500	95,5	29,5	1,35	66,0	67,0	21	2,00	0,5
630	96,5	28,3	1,41	68,4	68,0	13	2,00	0,5
800	97,2	26,9	1,49	70,8	69,0	11	2,00	0,4
1000	96,7	24,1	1,55	73,2	70,0	11	2,00	0,3
1250	97,0	22,4	1,61	75,4	71,0	17	2,00	0,4
1600	96,4	20,5	1,64	76,8	71,0	13	2,00	0,4
2000	97,1	20,5	1,65	77,5	71,0	15	2,00	0,3
2500	96,3	20,3	1,57	76,7	71,0	13	2,00	0,3
3150	96,4	20,5	1,46	76,3	71,0	11	2,00	0,3
4000	97,5	21,6	1,34	75,9	//	10	2,23	0,4
5000	98,3	22,6	1,21	75,3*	//	12	2,00	0,3

^(*) Valore limite della misurazione per effetto del rumore di fondo.

Superficie utile di misura del campione:

 $10,80 \text{ m}^2$

Volume della camera emittente:

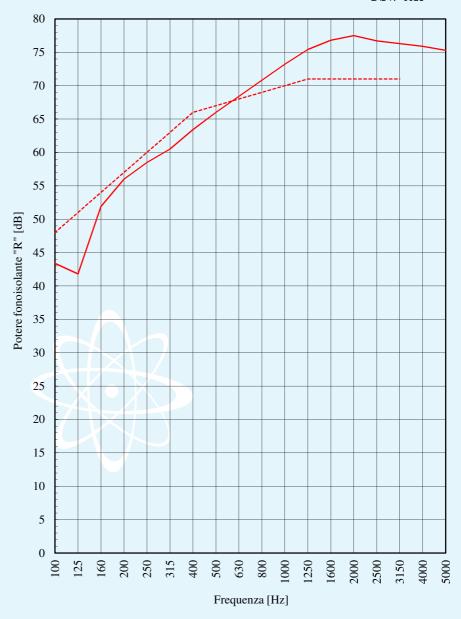
 99.1 m^3

Volume della camera ricevente:

 90.1 m^3

Esito della prova*:

Indice di valutazione a 500 Hz nella banda di frequenze comprese fra 100 Hz e 3150 Hz:


$$R_{\rm w} = 67 \text{ dB**}$$

Termini di correzione:

C = -3 dB $C_{tr} = -9 dB$

- (*) Valutazione basata su risultati di misurazioni di laboratorio ottenuti mediante un metodo tecnico.
- (**) Indice di valutazione del potere fonoisolante elaborato procedendo a passi di $0.1~\mathrm{dB}$ e incertezza di misura dell'indice di valutazione $U(R_w)$:

 $(67.8 \pm 0.4) \text{ dB}$

Rilievi sperimentali ----- Curva di riferimento

Il Responsabile Tecnico di Prova (Geom. Omar Nanni)

(Dott. Ing. Roberto Baruffa)

Il Responsabile del Laboratorio

di Acustica e Vibrazioni

L'Amministratore Delegato (Dott. Arch. Sara Lorenza Giordano)

Social Subscie