KNAUF INSULATION DAP GNF

Needled glass mineral wool felts for pyrolytic, electric or gas ovens.

DESCRIPTION

Knauf Insulation DAP GNF products are made of long glass mineral wool fibres specially needled to form a compact, dimensionally-stable felt with high temperature stability and optimal thermal insulation properties.

Due to its insulation performance standards, it can be used for insulating classic or convection, electric or gas ovens that meet or exceed energy efficiency Classes A++ / A+ / A. Product dimensions, sections, die-cuts and facing options can all be adapted to customer requirements.

Owing to the unique fibre bonding process, the felts do not contain organic binders or process aids and therefore comply with LGA test for contaminants, valid for mineral fibres in cookers and ovens. With this special production process we are able to guarantee that no emissions of odours and/or harmful substances are emitted during the use of ovens and cookers even at the highest temperatures.

Needled felts are tested for the presence of the restricted substances and comply to the RoHS directive and REACH regulation.

PERFORMANCE

Maximum service temperature
DAP GNF has a maximum service temperature of 550 °C

Thermal insulation
Optimal thermal insulation properties ensure ideal energy efficiency and energy consumption

Certified quality
LGA Certified
Complies with RoHS Directive
Complies with REACH Regulation

APPLICATION

Insulation of classic or convection, electric or gas ovens that meet or exceed energy Class A++ / A+ / A standards.

STANDARDS

Technical properties of Knauf Insulation CNF BOARD G2 are declared in accordance with EN 13162.


BENEFITS

- High temperature stability and resistance
- Thermal insulation properties ensure optimal energy efficiency and energy consumption
- Non-corrosive insulation material (AS Quality)
- Fire protection (European Class A1) – material melting point above 1000 °C
- Fire Hazard Classification FHC 0/0
- No organic binders
- Emission-free
- Custom forms and sections

CERTIFICATES
KNAUF INSULATION DAP GNF

TECHNICAL PROPERTIES

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction to fire</td>
<td>-</td>
<td>Euroclass A1</td>
<td>-</td>
<td>EN 13501-1</td>
</tr>
<tr>
<td>Melting point</td>
<td>-</td>
<td>&gt; 1000 °C</td>
<td>°C</td>
<td>DIN 4102/T17</td>
</tr>
<tr>
<td>Maximum service temperature</td>
<td>ST(+)</td>
<td>550 °C</td>
<td>°C</td>
<td>EN 14706</td>
</tr>
<tr>
<td>Water vapour diffusion resistance factor</td>
<td>µ</td>
<td>1</td>
<td>-</td>
<td>EN ISO 10456</td>
</tr>
<tr>
<td>Formaldehyde emissions at 350 °C</td>
<td>ζ</td>
<td>840 J/kgK</td>
<td>µ/µg</td>
<td>EN 13468</td>
</tr>
<tr>
<td>Water soluble chloride ions</td>
<td>-</td>
<td>&lt; 10 mg/kg</td>
<td>mg/kg</td>
<td>EN 13468</td>
</tr>
<tr>
<td>Thermal conductivity in relation to temperature</td>
<td>τ</td>
<td>0.034</td>
<td>W/mK</td>
<td>EN 12667</td>
</tr>
<tr>
<td>Formaldehyde emissions at 350 °C</td>
<td>-</td>
<td>≤ 10 mg/kg</td>
<td>mg/kg</td>
<td>DIN EN ISO 16000-3</td>
</tr>
</tbody>
</table>

HANDLING & STORAGE

Knauf Insulation DAP GNF is packed on a wooden or plastic pallet. Felts are covered with PE foil or wrapped twice with stretch foil, which is designed for short-term protection only. It is recommended to store the product either indoors, or under a cover and off the ground, for a maximum of up to 12 months. If the material becomes damp on location, ensure the moisture evaporates before placing the felts into a manufacturing process.

The performance of DAP GNF depends on the customer’s manufacturing process. Individual customers must optimize and control their manufacturing process to ensure the material meets the requirements of their manufacturing process and their final product.

Knauf Insulation, d.o.o.
Trata 32, 4220 Škofja Loka, Slovenia
Tel: +386 (0)4 5114 100 Fax: +386 (0)4 5114 319 E-mail: oem@knaufinsulation.com
For more info visit: www.oem.knaufinsulation.com

All rights reserved, including those of photomechanical reproduction and storage in electronic media. Commercial use of the processes and work presented in this document is not permitted. Extreme caution was taken in assembling the information, texts and illustrations in this document. Nevertheless, errors cannot be entirely ruled out. The publisher and editors assume no legal responsibility or any liability whatsoever for any incorrect information or any consequences thereof. The publisher and editors are grateful for any suggestions for improvement as well as the identification of any errors.