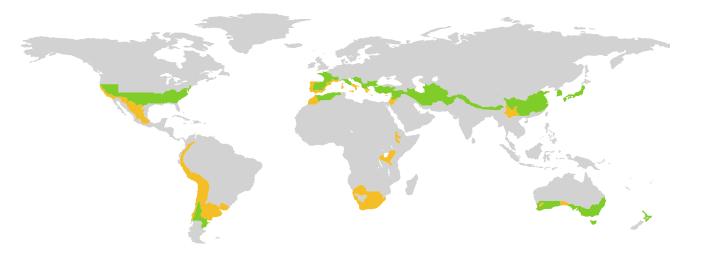
CERTIFICATE


Certified Passive House Component ID: 1236cs04 valid until 31. December 2022

Aditional thermal bridges

Name Steel bracket

Thermal bridge f_{Rsi} X= 0,025 W/K 0,88

Description Facade mounting bracket

Category Knauf Insulation S. L. Manufacturer Sant Boi de Llobregat SPAIN Passivhaus External Wall System Product name

This certificate for the warm, temperate climate zone was awarded based on the following criteria

Hygiene criterion

The minimum temperature factor of the interior surface

Comfort criterion

The U-value of the installed windows is

Efficiency criteria

Heat transfer coefficient of building envelope Temperature factor of opaque junctions Thermal bridge-free design for key connection details

An airtightness concept for all components and connection details was provided

Page 4/4

warm, temperate climate

Passive House Institute Dr. Wolfgang Feist 64342 Darmstadt GERMANY

Construction system | Steel construction

ices is	f _{Rsi=0,25m²K/W} ≥	0,65
	U _{W,i} ≤	1,05 W/(m ² K)
	U*f _{PHI} ≤	0,25 W/(m ² K)

f_{Rsi=0,25m²K/W} ≥

Ψ≤

0,82

0,01 W/(m²K)

COMPONENT Passive House Institute

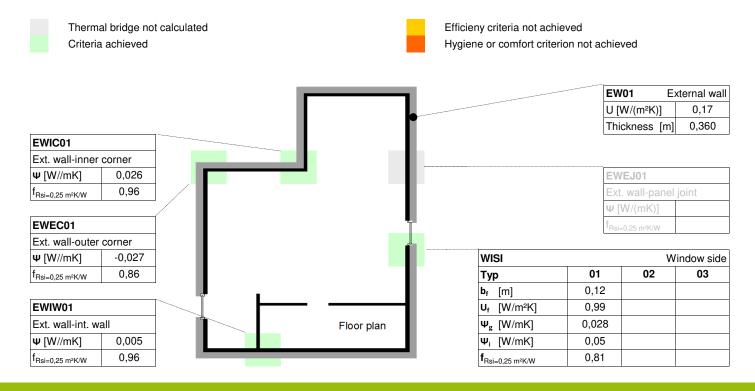
Knauf Insulation S. L. Avenida de la Marina 54, 8830 Sant Boi de Llobregat, SPAIN Phone: | +34 93 379 65 08 | hola@knaufinsulation.com | www.knaufinsulation.es

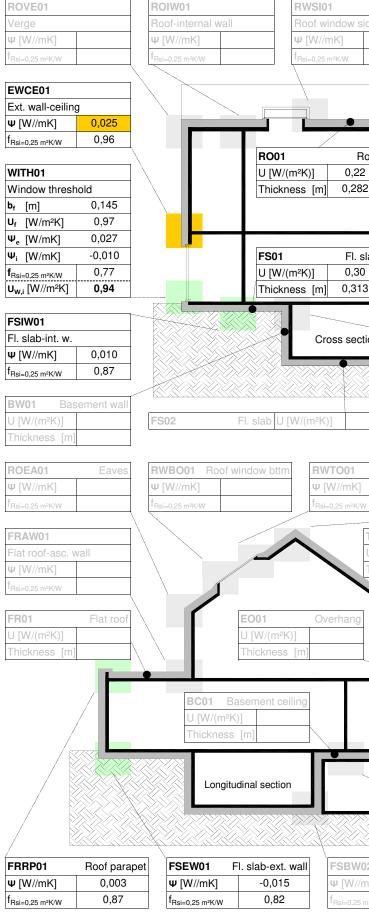
Opaque building envelope

The Passivhaus External Wall System is a lightweight steel system, designed by Knauf GmbH Sucursal en España, Knauf Insulation S.L., and SIGA, comprising Knauf 100/50 mm steel C-sections and Knauf 48/35 mm steel C-sections filled with Knauf Insulation Ultracoustic 035 (0.035 W/mK) and closed with Knauf Gypsum board between cavities, double Knauf Gypsum board internally and Knauf Aquapanel Outdoor Board externally. The system is further insulated externally with 160mm of Knauf Insulation Naturoll 032 (0,032 W/mK), fixed with steel angles to Knauf Aquapanel Outdoor Board; these also function as fasteners for a rainscreen facade. The system is to be used with a reinforced concrete floor slab, insulated to the underneath with rigid XPS insulation (0,035 W/mK) and internally with Ultracoustic Suelo TP by Knauf Insulation (0,037 W/mK); the roof deck is a flat reinforced concrete slab, insulated to the outside with Knauf Naturoll 032. The system has undergone analysis by the Passive House Institute against the thermal performance criteria for construction systems, and has been deemed suitable for the construction of passive houses in both warm-temperate and warm climates. The ceiling connection does not meet the efficiency criteria of <0,01 W/mK, however this

is typical for such details and, because the hygiene criterion is met, the system has been deemed certifiable.

Windows


Analysis was undertaken using a generic, passive house-standard timber-framed, triple-glazed window unit, featuring phA thermal values for the spacer and a polysulfide secondary seal. The calculations undertaken demonstrate that the window installation locations are suited to the warm-temperate climate zone, with no risk of surface condensation and subsequent mould growth.


Airtightness concept

The airtightness of the construction system is achieved through the use of a SIGA Majrex airtight membrane fitted to the insterior of the steel frame, to the inside of a plasterboard layer. For the junctions between membrane sections and connections to openings and the floor slab, SIGA Sicrall adhesive tape is used.

Explanatory notes

The Passive House Institute has defined international component criteria for seven climate zones based on hygiene, comfort and affordability criteria. In principle, components which have been certified for climate zones with higher requirements may also be used in climates with less stringent requirements. Their use might make economic sense in certain circumstances.

Page 2/4

Passivhaus External Wall System | ID: 1236cs04

Passivhaus External Wall System | ID: 1236cs04

www.passivehouse.com

/	NITO			Window top
/	Тур		02	03
	p_f [m]	0,12		
	J _f [W/m²K]	0,99		
/ [₽ _g [W/mK]	0,028		
/	₽ _i [W/mK]	0,051		
	Rsi=0,25 m²K/W	0,81		
	NIBO		Win	dow botton
	v _f [m]	0,12		
1 1 1 / F	J _f [W/m²K]	0,99		
	₽ _g [W/mK]	0,028		
	₽ _i [W/mK]	0,075		
- f	Rsi=0,25 m²K/W	0,79		
	J _{w,i} [W//m²K]	1,03		
ון	_	BWBC	01 Bsmnt	wbsmnt.c
		Ψ [W//r		
	_	f _{Rsi=0,25}	4	
		110=0,20		
		BWFS)1 Bsm	nt wfl. sla
		Ψ [W//r		
	***	f _{Rsi=0,25}	-	
		1101-0120		
		FSBW)1 Fl. sla	ab-bsmnt w
		Ψ [W//r		
Thickness [m]	f _{Rsi=0,25}	_	
oof window top		RORI0 Ψ [W//r		Ridg
		1		
		f _{Rsi=0,25}	m²K/W	
01 Cold r	oof			Junctio
01 Cold r W/(m²K)]	oof	f _{Rsi=0,25} ROJU Ψ [W//r)1	Junction
W/(m²K)]	oof	ROJU Ψ [W//r)1 mK]	Junction
	oof	ROJU)1 mK]	Junctio
W/(m²K)]	oof	ROJU Ψ [W//r	nK] nºK/W	
W/(m²K)]	oof	ROJU0 Ψ [W//r f _{Rsi=0,25}	11 nK] ^{m²K/W} 1 Colo	
W/(m²K)]	oof	ROJUO	1 nK] ^{m≈KW} 1 Colo nK]	
W/(m²K)]		ROJUC Ψ [W//r f _{Rsi=0,25} TCEA0 Ψ [W//r	1 nK] ^{m≈KW} 1 Colo nK]	
W/(m²K)]		ROJUC Ψ [W//r f _{Rsi=0,25} TCEA0 Ψ [W//r	11 nK] m≋k/W 1 Cold nK] m≊K/W	d roof-eave
W/(m²K)]	oof	ROJUC Ψ [W//r f _{Rsi=0,25} TCEA0 Ψ [W//r f _{Rsi=0,25}	11 nK] m²K/W 1 Colo nK] m²K/W 01 Ext. wa	d roof-eave
W/(m²K)]	oof	ROJUC Ψ [W//r f _{Rsi=0.25} TCEA0 Ψ [W//r f _{Rsi=0.25} EWEO	nK] m™W 1 Colo nK] m™W 01 Ext. wa nK]	d roof-eave
W/(m²K)]		ROJUC Ψ [W//t f _{Rsi=0,25} TCEA0 Ψ [W//t f _{Rsi=0,25} EWEO Ψ [W//t (w)	nK] m™W 1 Colo nK] m™W 01 Ext. wa nK]	d roof-eave
W/(m²K)]		ROJUC Ψ [W//t f _{Rsi=0,25} TCEA0 Ψ [W//t f _{Rsi=0,25} EWEO Ψ [W//t f _{Rsi=0,25}	nK] m™W 1 Colo nK] m™W 01 Ext. wa nK]	d roof-eave
W/(m²K)]		ROJUC Ψ [W//t f _{Rsi=0,25} TCEA0 Ψ [W//t f _{Rsi=0,25} EWEO Ψ [W//t f _{Rsi=0,25}	11 nK] 1 Cold nK] m²K/W 01 Ext. wa nK] m²K/W 02 Ext. wa	d roof-eave
W/(m²K)]		ROJUC Ψ [W//r f _{Rsi=0,25} TCEA0 Ψ [W//r f _{Rsi=0,25} EWEO Ψ [W//r f _{Rsi=0,25}	11 nK] m™KW 1 Colo nK] m™KW 01 Ext. wa nK] 02 Ext. wa nK]	d roof-eave
W/(m²K)]		ROJUC Ψ [W//t f _{Rsi=0,25} TCEA0 Ψ [W//t f _{Rsi=0,25} EWEO Ψ [W//t f _{Rsi=0,25} EWEO Ψ [W//t f _{Rsi=0,25} EWEO Ψ [W//t f _{Rsi=0,25}	11 nK] m™KW 1 Colo nK] m™KW 01 Ext. wa nK] 02 Ext. wa nK]	d roof-eave
W/(m²K)]		ROJUC Ψ [W//t f _{Rsi=0,25} TCEA0 Ψ [W//t f _{Rsi=0,25} EWEO Ψ [W//t f _{Rsi=0,25} EWEO Ψ [W//t f _{Rsi=0,25} EWEO Ψ [W//t f _{Rsi=0,25}	11 nK] m™W 1 Cold nK] m™W 01 Ext. wa nK] m™KW 02 Ext. wa nK] m™KW	d roof-eave
W/(m²K)]		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	11 nK] m ⁿ KW 1 Cold nK] m ⁿ KW 01 Ext. wa nK] m ⁿ KW 02 Ext. wa nK] m ⁿ KW 01 Bsmnt	d roof-eave
W/(m²K)]		ROJUC Ψ [W//r f _{Rsi=0,25} TCEA0 Ψ [W//r f _{Rsi=0,25} EWEO Ψ [W//r f _{Rsi=0,25}	11 nK] 1 Colo nK] m=K/W 01 Ext. wa nK] m=K/W 02 Ext. wa nK] m=K/W 01 Bsmnt nK]	d roof-eave
W/(m²K)]		ROJUC Ψ [W//r f _{Rsi=0,25} TCEA0 Ψ [W//r f _{Rsi=0,25} EWEO Ψ [W//r f _{Rsi=0,25} EWEO Ψ [W//r f _{Rsi=0,25} EWEO Ψ [W//r f _{Rsi=0,25}	11 nK] 1 Colo nK] m=K/W 01 Ext. wa nK] m=K/W 02 Ext. wa nK] m=K/W 01 Bsmnt nK]	d roof-eave
W/(m²K)]		ROJUC Ψ [W//r f _{Rsi=0,25} TCEA0 Ψ [W//r f _{Rsi=0,25} EWEO Ψ [W//r f _{Rsi=0,25}	11 nK] m²K/W 1 Colo nK] m²K/W 01 Ext. wa nK] m²K/W 02 Ext. wa nK] m²K/W 01 Bsmnt nK]	d roof-eave
W/(m²K)] ckness [m]		ROJUC Ψ [W//r f _{Rsi=0.25} TCEA0 Ψ [W//r f _{Rsi=0.25} EWEO Ψ [W//r f _{Rsi=0.25} BCEW Ψ [W//r f _{Rsi=0.25}	11 mK] mRKW 1 Cold nK] mRKW 01 Ext. wate nK] mRKW 02 Ext. wate nK] mRKW 01 Bsmntt nK[] mRKW 01 Bsmntt nK[] mRKW	d roof-eave all-overhang all-overhang clg-ext. wa

Page 3/4

www.passivehouse.com